<—> Software Engineering Technology

Measuring Calculus Integration Formulas
Using Function Point Analysis

Nancy Redgate
American Express Risk Management

Dr. Charles Tichenor
Defense Security Cooperation Agency

Function point counters, software developers, and others occasionally need to measure the size and complexity of calenlus inte-

gration formmlas embedded in engineering and scientific applications. Sizing these formulas using function point analysis can
result in more accurate measures of application sige and improved quality in forecasting costs, schedule, and quality. 1t can

also improve the confidence of those new to the function point methodology as they see that all of their calenlus work is rec-
ognized and measured. This article shows an approach to sizing these formulas. This methodology is in full compliance with

the International Function Point Users Group procedures and does not require any additional counting rules or patches.

Measuring the size and complexity of
software is critical to the develop-
ment of business models that accurately
forecast the development cost, duration,
and quality of future software applica-
tions. One way to measure software size
is through function point analysis, espe-
cially using the methodology of the
International Function Point Users
Group (IFPUG) as published in their
“Function Point Counting Practices
Manual” (CPM) version 4.1 [1]. Readers
unfamiliar with function point analysis
are referred to the CPM as the primary
reference for this methodology.

As good as the IFPUG function point
methodology has been, it has historically
had a perceived gap regarding the sizing
of software algorithms, especially those
embedded in real-time software. A pro-
posed solution to the function point
community was a general procedure to
measure the size of those algorithms,
which appeared in CROSSTALK
February 2001 [2].

Since publishing that article, the
authors were asked to focus this proce-
dure for certain types of algorithms —
calculus integration formulas — that can
appear in engineering and scientific appli-
cations. This article, therefore, focuses
the general procedure for sizing algo-
rithms into a specific procedure for siz-
ing calculus integration formulas. This is
suitable for experienced function point
counters who are also familiar with the
fundamentals of calculus.

Description of an Algorithm

An algorithm is a series of equations
solved in a logical sequence to produce an
external output (EO). Real-time software
sometimes contains embedded algo-
rithms. Examples of these can include
algorithms for controlling a nuclear reac-
tor, calculating complex pricing agree-
ments, or optimizing production levels in

24 CRrossTALK The Journal of Defense Software Engincering

manufacturing. Calculus integration for-
mulas fit this description of an algorithm
because, as we will show, their solution
requites solving a series of equations in a
logical sequence before a solution can be
reached.

Every algorithm must have one exter-
nal input (EI), internal logical file (ILF),
and EO with at least the following:

e Data and/or control information
must be externally input into the algo-
rithm.

“The authors suggest
that ... [those] in
mathematical academia
or those with strong
mathematical skill sets
can further this theory.”

e
e Data and/or control information

must be logically stored. This storage
area is not necessarily shown on an
entity relationship diagram or other
diagram depicting physical data files.

* The results of the algorithm’s execu-
tion must be identifiable to the user as
an EO.

Integration Formulas as
Algorithms

Let us consider the following as an
example for using function point analysis
to measure integration formula size and
complexity.

10
_[6 dx)
4

The solution of this formula can be
expressed as the area under the curve
f(x) = 6, as bounded by the x-axis, and

within the domain four through 10.
Figure 1 shows this graphically as the
shaded area.

The Fundamental Theorem of
Calculus gives us the algorithm to deter-
mine this area. The general formulation
of the theorem is as follows.

b
[t ax=Fp)-Fa) @

In this example, this formulates as fol-
lows.

10

_[6 dx = F(10) - F@4) (3
4

This algorithm can be solved graphically.
First, calculate the area of the shaded
region in Figure 2. This is the region
bounded by the points (0,0), (10,0),
(10,6), and (0,6). This is F(b), or F(10),
and its area is 60 square units.

Then, calculate the area of the
striped region in Figure 3. This is the
region bounded by the points (0,0), (4,0),
(4,6), and (0,6). This is F(a), or F(4) and
its area is 24 square units.

Finally, subtract the striped region
from the shaded region. This is F(b) -
F(a), or F(10) - F(4). The remaining
shaded region is shown in Figure 4. Its
area is 60 - 24, or 36 square units.

Measuring Size and
Complexity

Counting the ILF

Sometimes an ILF is often identified
with a physical data table. Here we need
to be more specific. According to the
IFPUG’s CPM, an ILF is “... a user iden-
tifiable group of logically related data or
control information maintained within
the boundary of the application [1].” In
mathematical terms, we suggest that an
ILF could be described using the follow-

June 2002

ing set theory: a set of data or control
information maintained within the
boundary of the application.

A mathematical set can be represent-
ed in several ways. For example, we
might represent the set of a// numbers
greater than five as the following:

* {all numbers greater than five}, or
* using a number line such as the fol-
lowing:

01234567

In this example, therefore, we have
an ILE, which is the set of data points in
the Cartesian plane required to solve this
equation using the Fundamental
Theorem of Calculus.

Sometimes ILFs have subgroups of
data. These atre called record element
types (RETS). According to the CPM [1],
a RET is a “user recognizable subgroup
of data elements within an ILF ...” Using
set theory, we could desctibe an RET as
a subset of data.

Each ILF is measured by considering
the number of data element types
(DETs) it logically contains and the num-
ber of RETs it contains. A complexity
matrix in the CPM then shows how to
convert the combination of counted
DETs and RETS into function points.

Counting the RETs

The Fundamental Theorem of Calculus
states that the set of points (or the area)
in the Cartesian plane, which represent
the solution to this integration formula,
is found by subtracting the area of the
striped region of Figure 3 from the area
of shaded region of Figure 2. This
resulting region has the area shown in
Figure 4.

For this example, this entire region
has three subsets. The first subset of all
points in the Cartesian plane affected by
this algorithm is the area of Figure 2,
that is, F(b), or F(10). The second subset
is the area in Figure 3: F(a), or F(4). The
third subset is the area in Figure 4: F(b) -
F(a), or F(10) - F(4). This is the solution
subset. Therefore, this integration for-
mula has one ILE, with three RETS.

Counting the DETs
The integration formula tells us how to
partition the Cartesian plane into the

areas F(b) and F(a). Let us recall the for-

mula.

10
Ié dx (4)
4

The ILF is the region of the Cartesian

June 2002

Measuring Calculus Integration Formulas Using Function Point Analysis

f(x)

fx)

fx)=6

f(x)=6

(0,0) 4 10, X

Figure 1: Solution to Equation 1

(0,0) 4 10 X

o ——

Figure 2: F(b)

f(x)

f(x)

fx)=6

=6

(0,0) 4 10 x

I
|
Figure 3: F(a)

(0,0) 4 10 x

Figure 4: F(b) - F(a)

plane bounded by the f(x) on the north

side, the x-axis on the sowzh side, x = 10

on the east side, and x = 0 on the west

side. The solution RET' is bounded by x

= 4 on the west side. This gives us the

information we need to count this for-
mula’s DETS.

* The first DET is f(x), the northern
boundary of the ILFE In this case, the
DET is six.

e The second DET is dx, which tells us
that the integration is with respect to
x and is therefore bounded in this
case by the x-axis on the southern
side.

* The third DET is 10, which gives us
the “b” in F(b).

* The fourth DET is four, which gives
us the “a” in F(a).

Therefore, this ILF has three RETs and

four DETSs. According to the CPM com-

plexity matrix, this is a low complexity

ILF and is worth seven function points.

To generalize this method, we suggest

the following key points shown in

Figure 5.

* The shaded area on this graph repre-
sents an ILE It is “... a user identifi-
able group of logically related data or
control information maintained with-
in the boundary of the application.”

e The RETs are the “blocks” or areas
needed to graphically depict F(b),
F(a), and F(b) - F(a).

* The number of DETs represents the
instances of data and/or control
information to define the solution
area F(b) - F(a).

* This ILF does not appear in an ER
diagram.

Counting the EI
One can imagine a simple version of an
input screen having a layout as follows:

fx)= 1
dxordy]
b=[__]
a= [

There are four DETs as stated, plus the
control information ENTER key to affect
the input process. There is one ILF being
referenced (File Types Referenced [FTR]),
which is the graph of Figure 5. The CPM
complexity matrix shows that an EI with
four DETs and one ILF is a Low com-
plexity EI worth three function points.

Counting the EO
Imagine a simple report with the solution
of the integration formula calculations —

perhaps a paper report that looks like this.
The solution is]

In this case, there is one DET on the
report, and one FIR — the graph of
Figure 5. Therefore, the CPM complexity
matrix is used to show that this is a Low
EO worth four function points.

Figure 5: Equation 1% Internal Logic File

www.stsc.hillafmil 25

Software Engineering Technology

CoMING EVENTS

July 18-20
Shareware Industry Conférence
St. Louis, MO

www.sic.org

July 22-25
Joint Advanced Weapons Systems Sensors,
Simulation, and Support Symposium
(JAWS S3)
Colorado Springs, CO
www.jawsweg hill.af. mil

July 22-26
6" Annual PSM Users’
Group Conference
Keystone, CO

wwwpsmsc.com

August 19-22
The 2 Software Product

Line Conference
San Diego, CA
www.sei.cmu.edu/SPLC2/

September 9-13

International Conference on Practical
Software Quality Techniques
(PSQT) 2002 North
and International Conference on
Practical Software Testing Techniques
(PSTT) 2002 North
St. Paul, MN
www.psqgtconference.com

November 18-21
International Conference on
Soﬁware Process Improvement
Washington, DC
www.software-process-institute.com

April 28-May 1,2003
Software Technology Conference 2003

SEE»-

Salt Lake City, UT
www.stc-online.org

26 CRroOsSTALK The Journal of Defense Software Engincering

Other Examples and Their

Solutions
Consider taking a function point count of
the following integration formula.

10

[ax 5)
1

In principle, this formula’s ILF is counted
the same way as the previous example.
There ate four DETs (x° dx, 10, and 4).
There ate three RETs in the ILF (F(10),
F(4), and F(10) - F(4)). This is a low com-
plexity ILE, worth seven function points.
We assume that the EI input screen and
EO are similar to the first example, so the
total unadjusted function point count is 14.
Consider a slightly different formula.

10
I (x* -x) dx ©)
1

We count the function points using the
same logic.

The solution to this formula requires
us to break this into two parts. We first use
the Fundamental Theorem of Calculus to
find the following,

10
J o ax 0
4

Then we subtract from it the solution to
the second part.

10

[ax ®

4
This ILF therefore contains six RETs —
three regions from the first part and three
regions from the second part. There are
four DETSs needed to solve the first part
(%% dx, 10, and 4) and four to solve the
second part (x, dx, 10, and 4). Therefore,
this ILF of six RETs and eight DETs is an
average complexity ILF worth 10 function
points.

One point needs to be clarified here
for the advanced function point countet.
Even though the dx, 10, and four might
appear to be counted twice in this ILE, this
does not violate the CPM rule that each
DET must be unique. They are actually
unique here because the Fundamental
Theorem of Calculus must be executed
twice — once for each part. Each instance
of dx, 10, and four must be used in order
to solve the formula.

Finally, consider this formula.

10
J3x ax)
1

The solution to this requires first simplify-
ing to the following,

10
3IX dx
4

This formula’s ILF still has its three RETS,
but its DET count increases from four to
five. This is because the solution area of
the following is multiplied by three.

10

J-de

4

(10)

an

Further Notes for Function

Point Counters

The above examples were intended to be
simplistic to illustrate the procedure. In
more complex cases, we might want to
consider whether, for example, there is an
add, change, and delete capability associ-
ated with the EI If so, count up to three
Els accordingly (one for the add capabil-
ity, one for the change capability, and one
for the delete capability.) The EO may be
more complex, or several EOs might be
required. There might be an EQ capabili-
ty to view what data and control informa-
tion is currently in the ILE Finally, an
external interface file could be involved.

If an integration formula can be for-
mulated in several ways, extend the con-
cept of the elementary process and
choose the smallest unit of activity mean-
ingful to the user. For example, perhaps
choose the ILF formulation having the
smallest number of RETS.

Algorithms may influence the general
systems characteristics. You may need to
check, for example, the following:

* GSC5 Online Data Entry.

* GSC8 Online Update.

* GSC9 Complex Processing.
* GSC14 Facilitate Change.

Areas for Future Research

The authors suggest that readers in math-
ematical academia or those with strong
mathematical skill sets can further this
theory. The authors suggest that a variety
of integration techniques can be counted
and that research should be conducted to
expand this methodology.

Conclusion

Function point analysis can be used to
measure the size and complexity of algo-
rithms in general, and integration formu-
las in particular. Advanced function point
counters need to recognize all algorithms
in the software they count, to include

June 2002

those embedded integration formulas.
The IFPUG function point methodology
can be used to measutre the size and com-
plexity of these integration formulas
without the need for additional patches or
counting rules.

Reference

1. International Function Point Usets
Group. Function Point Counting Prac-
tices Manual Release 4.1, 1999. Refer
to <www.ifpug.org/publications/
manual.htm>.

2. Redgate, Nancy, and Charles B.

Measuring Calculus Integration Formulas Using Function Point Analysis

About the Authors

Nancy Redgate has a
bachelor’s degree in
industrial engineering/
opetations research from
the University of Massa-
chusetts at Amherst. She
received master’s degrees in operations
research, statistics, and business adminis-
tration from Rensselaer Polytechnic

Institute.

Charles B. Tichenor,
Ph.D., setves as an
information technology
operations research ana-
lyst for the Department
of Defense, Defense
Security Cooperation Agency. Dr.
Tichenor holds a part-time position as
an adjunct faculty member at Strayer

Tichenor. “Measure Size, Complexity
of Algorithms Using Function Points.”

CROSSTALK Feb. 2001: 12-15. 34-02-01

Parsippany, NJ 07054

Phone: (973) 526-6602

Fax: (973) 526-3635

E-mail: nancy.redgate@prodigy.net

Additional Reading

1. International Function Point Usets
Group. “Function Points as Assets.”
(Provides direction for using function
point analysis to develop cost, sched-
ule, and quality forecasts.)

2. Garmus, David, and David Herron.
Measuring the Software Process: A
Practical Guide to Functional
Measurements. Upper Saddle River,
N.J.: Prentice Hall PTR, 1996.

3. Jones, Capers. Applied Software

Measurement: Assuring Productivity
and Quality. New York: McGraw-Hill,

1991.

5 Wood Hallow Drive

University’s Anne Arundel, Md. cam-
pus. He has a bachelot’s degtee in busi-
ness administration from Ohio State
University, a master’s degree in business
administration from Virginia Polytech-
nic and State University, and a doctorate
degree
University.

in business from Berne

Defense Security
Cooperation Agency

1111 Jefferson Davis Hwy.,
East Tower, Suite 303
Arlington,Va. 22202-4306
Phone: (703) 601-3746

Fax: (703) 602-7836

E-mail: tichenor@erols.com

Software Cost Estimation Web Site

www.ecfc.u-net.com/cost/index.htm
The Software Cost Estimation Web site presents a review of

current cost estimation techniques to help industry and
academia choose the appropriate methods when preparing
software cost estimates. The site covers both traditional and
state-of-the-art methods identifying advantages and disad-
vantages of each and the underlying aspects in preparing
cost estimates. The site also provides links to other software
cost estimation sites that are involved in this area and
details the that has been undertaken at
Bournemouth University.

research

International Function Point Users Group
www.ifpug.org

The International Function Point Users’ Group (IFPUG) is a
non-profit organization committed to increasing the effec-
tiveness of its members’ information technology environ-
ments through the application of function point analysis
(FPA) and other software measurement techniques. IFPUG
endorses FPA as its standard methodology for software sizing
and maintains the “Function Point Counting Practices
Manual,” the recognized industry standard for FPA.

Practical Software and Systems
Measurement Support Center

WWW.psmsc.com

The Practical Software and Systems Measurement (PSM) Support
Center is sponsored by the Department of Defense (DoD) and the
U.S. Army. It provides project managers with the objective infor-
mation needed to successfully meet cost, schedule, and technical
objectives on programs. PSM is based on actual measurement
experience with DoD, government, and industry programs. The
Web site also has the most current version of the PSM Guidebook.

The Software Productivity Consortium
www.software.org/default.asp

The Software Productivity Consortium is a nonprofit partnership
of industry, government, and academia. It develops processes,
methods, tools, and supporting services to help members and affil-
iates build high-quality, component-based systems, and continu-
ously advance their systems and software engineering maturity
pursuant to the guidelines of all of the major process and quality
frameworks. Its Technical Program builds on current best practices
and information technologies to create project-ready processes,
methods, training, tools, and supporting services for systems and
software development.

June 2002

www.stsc.hillafmil 27

